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Electronic structure in icosahedral AICuLi quasicrystals and 
approximant crystals 

M Windisch, M KrajEt and J Hafner 
lnstitut fU Theoretische Physf, TU Wien. Wiedner HaupmrraBe 8-10, A-I040 Wien, Austria 

Received 13 April 1994, in final form 2 lune 1994 

Abstract The elecbonic structure has been calculated for large approximant crystals (up to 
51 752 atoms in the periodically repeated cell) to icosahedial AlCuLi quasicrystals. The results 
show that a deep structure-induced pseudogap aI the Fermi energy is a generic property of the 
quasicrystal and its crystalline appmximm. The physical mechanism for the formation of the 
gap is discussed on the basis of a quasiperiodic generalization of the nearly-free-electron model. 

1. Introduction 

Since the discovery of quasicrystals 111, the problem of why and under what circumstances 
nature prefers quasiperiodic to periodic order has received much attention. There have been 
early suggestions [2-6], based largely on electron-counting arguments, that the energetic 
stability is promoted by a HumeRothery-like mechanism, leading to the formation of a 
pseudogap in the electronic density of states at the Fermi level. On the experimental 
side, this argument is supported by the discovery 17-91 that the electronic properties of 
stable quasicrystals such as A17PdzMn, AhCuzFe or AlsLisCu exhibit striiking semimetallic 
properties, with low-temperature electronic resistivities orders of magnitude larger than 
those found in ternary amorphous alloys [IO]. Quite generally, the more stable and more 
perfect the quasicrystal (as measured by the grain sue), the larger the low-temperature 
resistivity PO, the more negative the temperature coefficient (l/p)(dp/dT) of the resistivity, 
and the lower the electronic density of states n(&) at the Fermi level [Il l .  However, 
the existence of a smcturally induced pseudogap at EF alone is not sufficient evidence 
for a predominantly electronic mechanism promoting quasicystalline stability: structure- 
induced gaps or pseudogaps exist also in c d n  metallic glasses [12-151, in the crystalline 
Hume-Rothery compounds [16, 171 and in a certain class of crystalline compounds that are 
found at compositions close to that of the quasicrystalline phase [18-201, e.g. cr-AlMnSi, 
R-AICuLi and (A1,Zn)aMgpz. The atomic arrangement in these crystals is believed to be 
similar to the local order in the quasicrystal. The lattice of these approximant crystals 
may be specified by the rational number 7. = F.+,/F,, approximating the irrational 
number r = (1 + d ) / Z  (the golden mean) defining the incommensurability of the 
quasicrystal. The a-AIMnSi, R-AICuLi and (Al,Zn)4gMg32 phases are the Ill-approximants 
to the corresponding quasicrystals, and in some cases higher-order approximants (e.g. a 
3/2-appmximant [21] to icosahedral AIZnMg) exist. Hence the question arises whether 
the quasicrystal receives more band-gap stabilization than the competing crystalline and 
amorphous phases. 
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There have been many experiments to demonstrate the existence of a pseudogap in 
quasicrystalline alloys by various spectroscopic techniques [22-25], but only a very few 
studies 126, 271 have succeeded in demonstrating that the pseudogap is slightly more 
pronounced in the quasicrystal than in the approximant phase-a notable example is just 
the icosahedral AlCuLi phase. The experiments are hampered by the fact that the properties 
of the quasicrystal depend often quite sensitively on the preparation of the specimen [28]. 

Under these circumstances, theoretical predictions of the electronic properties of 
quasicrystals are highly desirable. The problem is that standard techniques for electronic 
structure calculations based on the use of Bloch's theorem are applicable only to systems 
with a maximum of a few hundred atoms per unit cell. For this reason, most electronic 
structure calculations refer to the lowest-order approximants: R-AICuLi [29], or-AIMnSi 
[30], (AI,Zn)dgMg32 [31]-a11 Ill-approxiinants to the icosahedral phases. Larger systems 
may be treated using approximate techniques working in real space, such as the recursion 
technique. To date, electronic structure calculations for realistic higher-order approximants 
have been presented only for AlZnMg (up to the 5/3-approximants with 12380 atoms in 
the periodic cell) [32-341. In this system, the pseudogap shows no systematic variation in 
the hierarchy of the approximants. This is not surprising, since the 3/2-approximant as well 
as the icosahedral quasicrystal exist only as memtable phases. It is therefore compelling 
to extend the investigations to stable quasicrystals. The problem is that these calculations 
must be performed for accurate structural models. For the icosahedral AlZnMg phase such 
a model [35] is given by a three-dimensional Penrose tiling, with a decoration proposed by 
Henley and Elser [36] (derived from the structure of the (Al,Zn)dgMg31 Frank-Kasper phase 
[ 181). For AlCuLi, the applicability of the Henley-Elser model has been disputed [37]. Only 
very recently we have been able to show 1381 that a slightly modified Henley-Elser model 
describes the structure of icosahedral AlCuLi very accurately and may be reconciled with 
alternative descriptions of the quasicrystalline lattice based on canonical cell tiling concepts 
[39, 401 or the decoration of large (r3-inflated) Penrose (or Ammann) rhombohedra with 
icosahedral clusters [37, 411. 

In the present paper, we present a systematic study of the electronic structure of a 
hierarchy of rational approximants to icosahedral AlCuLi-up to 8K-approximants with 
more than 5 x 104 atoms in the periodically repeated unit. The calculations are based on a 
self-consistent linear-muffin-tin orbital (LMTO) technique [42] for the Ill-approximant and 
on tight-binding LMTO calculations [43, 441 performed with recursion techniques [45] for 
the higher-order approximants. The paper is organized as follows: In section 2 we review 
very briefly the geometrical properties of the approximant structures, section 3 summarizes 
the technical aspects of the TB-LMTO recursion technique. The variation of the electronic 
density of states (DOS) in the hierarchy of the approximants and its dependence on the 
details of the structural model is discussed in section 4. In section 5 we describe the Bloch 
spectral functions of electrons in a large approximant and derive the dispersion relations 
of electrons in a repeated Brillouin-zone scheme of the approximant (corresponding to a 
scheme of quasiperiodic Brillouin zones in the infinite limit). This helps to elucidate the 
origin of the structureinduced electronic pseudogap at the Fermi level. In section 6 we 
discuss very briefly the photoelectron- and soft x-ray spectra and compare with the available 
sprectroscopic data. In section I we present our conclusions. 

2. Atomic structure 

Attempts to model the structure of i-AICuLi have been made on the basis of: (a) three- 
dimensional Penrose tilings decorated with atoms [35, 381, (b) t3-inflated Penrose tilings 
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decorated with icosahedral clusters [46], (c) canonical cell tilings L38-401, again decorated 
with large icosahedral clusters and (d) direct projections from six-dimensional space, with 
atomic surfaces determined on the basis of the six-dimensional Patterson functions [41]. A 
comparative discussion of these models and details of their construction are given in [38]; 
in the following we recapitulate only those aspects of the construction of the approximants 
that are of immediate relevance for the discussion of the electronic structure. 

2.1. Three-dimensional periodic Penrose tiling 

The three-dimensional Penrose tiling (3DPT) has been proposed as one of the earliest models 
for quasiperiodic lattices [47]. For the quasicrystals of the i-AIZnMg and i-AICuLi classes, 
an atomic decoration of the Penrose rhombohedra with atoms has been proposed by Henley 
and Elser [19] on the basis (Al,Zn)49MgS* Frank-Kasper phase and the R-phase Al&uLis. 
The two classes of structures differ only in the occupation of the twelvefold vertices of the 
latlices which are occupied for i-AlZnMg, but remain vacant in i- and R-phase AICuLi. 

The lowest-order approximant is built by multi-shell triacontahedra of 136 atoms centred 
on the twelvefold vertices, touching and interconneckd with other triacontahedra. The 
symmetry of the Ill-approximant is body-centred cubic, space group Im3. Although the 
element& Penrose rhombohedra are decorated in the same way in all approximants, the large 
triacontrahedral clusters do not necessarily remain intact in the higher-order approximants. 

The rational approximant is not entirely determined by specifying the rational 
approximation rn to r .  In addition, there is the possibility of shifting the triacontahedd 
acceptance domain in perpendicular space over a range that shrinks with increasing n.  This 
degree of freedom is related to a phason mode-a shift of the acceptance domain changes 
the spatial arrangement of the Penrose tiles, but not their frequency. To illustrate the effect 
of such a rearrangement on the electronic structure, we have considered two variants of the 
I/l-approximant: one with the position of the acceptance domain leading to the R-phase 
and one with a shifted acceptance domain (in a centrosymmetric position) leading to a high- 
symmetry crystalline approximant (space group 1213, a full crystallographic description of 
similar variants of low-order approximants is given in [35]). 

2.2. Canonical cell tiling 

The building principle of the canonical cell tiling introduced by Henley [39] is to fill 
space with four types of ‘canonical cells’: a distorted (‘Bcc’) tetrahedron, half a trigonal 
antiprism, a triangular pyramid and a trigonal prism. The cells can be decorated with Penrose 
rhombohedra without gaps and overlaps, and this decoration defines a set of packing rules for 
the cells. The motivation for the introduction of the canonical cell tiling (CCT) concept was 
twofold (a) to build an icosahedral network of the inter-cluster linkages existing between 
the triacontahedral clusters in the R-phase (b-bonds along cube edges and c-bonds along 
half the body diagonal), and (b) to optimize the density of the k network. 

A central problem of the CCT concept is that the proof of quasiperiodicity is still lacking. 
However, Newman and Henley [48] have developed a transfer-matrix technique which 
explicitly generates all approximants up to 5/3, and MihalkoviE and Mrafko [40, 491 have 
developed a technique based on a Monte Carlo optimization of the b-c network and applied 
it to the generation of CCTs up to the 13/8-approximant. 

A detailed discussion of the application of the CCT concept to i-AICuLi and of the 
relation of the CCT and 3DPT models is given in 148,491. With the position of the acceptance 
domain leading to the R-phase structure, the VI-, 2/1- and 3/2-approximants are identical 
in the CCT and 3DFT schemes. Differences appear in the higher-order approximants, where 
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the ccr models preserve the integrity of the 136-atom triacontahedral clusters (placed on 
the twelvefold nodes of the ccr )  whereas the 3DPT models do not. 

The integrity of the 136-atom clusters is a feature that the CCT shares with the cluster- 
decoration models of the s3-inflated Penrose tilings. However, as the CCT maximizes the 
density of the k-c network, it also minimizes the number of glue atoms (i.e. of atoms 
that do not belong to any of the hiacontahedrd clusters) to about 2% even in the largest 
approximants (to be compared with at least 20% glue atoms in the cluster tiling models). 

2.3. Displncive modulation 

In a quasicrystal or in a higher-order approximant any atom is found in a very large number 
of different environments. Hence the interatomic forces will lead to a displacive modulation 
of the idealized model: if the structure is stable, the displacement field will have the same 
symme'uy as the idealized lattice. We have determined the displacement field by molecular 
dynamics annealing and conjugate-gradient optimization of the equilibrium positions under 
realistic interatomic forces (see [38] for details). Both the 3DFT and the CCr models are 
stable up to the 8/5-approximant (the largest model included in our study). At the level 
of partial pair-comlation functions of the relaxed sh'uctures, the CCT and 3DPT models are 
virtually indistinguishable and in very good agreement with experiment. The same applies 
to the powder-diffraction spectra. Minor differences appear in the singlecrystal diffraction 
data, where a slight preference for the CCT models appears. For later use we present in 
figure 1 the intensities of the Bragg peaks in a plane containing the two-, three- and five- 
fold symmetry axis, calculated for the Y3-approximant to the 3DPT (the CCr model gives 
an essentially undistinguishable result). 

3. Calculation of the electronic structure 

For the Ill-approximant with a 160-atom cubic cell, the electronic stmcture has been 
calculated self-consistently, using the standard LMTO technique 1421 in the atomic-sphere 
approximation (ASA). Brillouin-zone integrations have been performed using the linear 
tetrahedron technique, based on a grid of 55 k-points in the irreducible part of the zone. 

For the higher-order approximants, the LMTO Hamiltonian is transformed to a tight- 
binding (TB) form. The two-centre TB Hamiltonian in the Lowdin orthogonal representation 
is given by [43, 441 (a superscript y defines quantities calculated in a nearly orthogonal 
basis) 

H V = ~ " + h Y  (1) 

where E ,  (U = nlm) is the reference energy for the linearization of the MTOs. The 
Hamiltonian (1) is accurate to second order in ( E  - 6"). The matrix hY is determined 
by the expansion 

kY =kCLfkOLuuhafhuoahuouh' ... (2) 

where h" and oa are the Hamiltonian and overlap matrices in a screened, most localized 
basis. h' satisfies the relation 
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Figure 1. Distribution and intensities of Bragg peaks in a plan containing the [WO-. thrm and 
five-fold symmetry axe$ calculated for the 5D-approximani Lo the ~DPT model for i-AICuLi. 

where cu and d' are the diagonal matrices of the potential parameters describing the centre 
of gravity and the width of each band. Sa is the matrix of the screened structure constants 

s= = SO(1 - CYsy (4) 

calculated in terms of the standard LMTO structure constants S" and the diagonal screening 
matrix a with parameters a = (0.34848, 0.053030, 0.010714) for s, p and d orbitals, 
respectively [43]. When the standard LMTO potential parameters C c y ,  A dY and 
y (standing for the asymmehy of the band) are known (we take them from the LMm- 
ASA calculation for the Ill-approximant), the screened potential parameters ce, de and the 
overlap parameter o' are obtained using the expression [43, 441 
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The recursion method [4S] is a real-space technique for calculating a projected density 
of states (DOS) 

in the form of a continued fraction expansion. If the initial state I$) is a local atomic 
orbital with quantum numbers nlm at the site Ri , the projected density of states is just 
the local partial DOS ni,.rm(E). If the initial state I$) is a Bloch function with wave vector 
k, the resulting projected DOS is the Bloch spectral function j (k ,  E )  of the electrons. 
The total DOS may be computed in three different ways. (a) By taking the average over 
the local DOS calculated on a large number of sites. This approach has the disadvantage 
that for an amorphous system it converges rather slowly. (b) By integrating the Bloch 
spectral functions j ( k ,  E )  over a large volume in k-space. Again this approach is rather 
cumbersome, because it requires the calculation of j ( k ,  E )  for many different k-vectors. 
(c) The most convenient way to produce the total DOS is to choose an initial state given in 
a TB basis as a vector U;;'" 

where the are uniformly distributed random numbers in the interval [O, Zn). This 
approach corresponds to taking an incoherent average over the local densities of state, as 
for a sufficiently large model interference effects cancel out. A possible statistical error 
resulting from the random sampling may be minimized by taking an average over several 
random vectors. A detailed comparative study of the three approaches has been given by 
Hafner [SO]. 

Technically, the recursion method defines a basis in which the symmetric matrix H 
assumes a tridiagonal form. The inversion of ( E  - H ) - l  leads directly to the continuous 
fraction representation of the Dos. The continued fraction may be terminated at a level L that 
is much smaller than the dimension N of the Hamiltonian matrix. The information contained 
in the fist L recursion coefficients is equivalent to that contained in 2 x L moments of 
the DOS. For the largest approximant we used up to L = 80 recursion steps and obtained a 
smooth spectrum by applying a proper termination procedure (we used Gaussian quadrature 
[Sl] for the total DOS and the Lucchini-Nex terminator [S2] for the Bloch spectral function). 

4. EIeetronic density of states 

4.1. I/l-approximts 

Figures 2(a), (6) show the total and the site- and angular-momentum-decomposed partial 
electronic densities of states of R - p h  AlCuLi (i.e. the Ill-approximant to the icosahedral 
phase with 160 atoms in the simple cubic cell) as obtained from a self-consistent LMTO 
calculation. The Brillouin-zone integration has been performed on a grid of 55 k-points 
in the irreducible wedge of the simple cubic Brillouin zone. Given the smallness of the 
Brillouin zone and the rather extended grid of IC vectors, even the fine details of the spiky DOS 
are fully converged. The width of the band is almost equal to the free-electron bandwidth. 
The most prominent features of the DOS are the main peak at - 3 eV below the Fermi edge 
and the broad depression of the DOS around Ep At the Fermi level, the DOS is a(&) = 0.21 
states (eV atom)-'; it drops to -0.13 states (eV atom)-' only 0.03 eV below EF. 
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This corresponds to about one-third of the free-electron DOS of &(EF) N 0.33 states (eV 
atom)-'. Experimental estimates from low-temperature heat-capacity measurements yield 
n(&) =0.13 StateS(ev atom)-' [28]. The DOS minimum is most pronounced in the partial 
Al DOS, whereas the A1 and Li contributions are already quite small at EF. Figure 2(b) 
shows the decomposition of the local DOS into the s, p. d angular-momentum contributions. 
We find that the Al-s states are concentrated in the lower part of the band, whereas the 
states close to the Fermi level are predominantly of p character. A similar result holds for 
the Li states. The Cu states are predominantly d states. 

Our results are in good agreement with earlier calculations of Fujiwara and Yokokawa 
[29, 531, except for a distinctly larger bandwidth in Fujiwara's calculation. This difference 
is due to two factors: we have allowed a random distribution of the AI (Cu) atoms over 
the available vertex and mid-edge positions in the ratio of AkCu = 468 ('G' positions 
inside the rhombic dodecahedron are only decorated by AI), although this breaks the Bcc 
point-group symmetry. Fujiwara and Yokokawa tested different distributions of AI and Cu 
atoms compatible with the sc symmetry (leading to somewhat different stoichiometries). 

Our configuration was relaxed under the constraint of conserving the symmetry. This 
allows us to eliminate unrealistically short interatomic distances that lead to strongly bound 
states below the bottom of the free-electron band. 

The DOS minimum of the Fermi level is structure induced (the precise mechanism for 
the formation of the gap will be discussed below). Within a given class of approximants, 
the existence of the 'pseudogap' depends on the precise arrangement of the Penrose 
rhombohedra within the periodically repeated cell. This is demonstrated by a calculation 
for a high-symmetry I/l-approximant with the acceptance domain shifted to a body-centred 
position within the allowed domain (see [35] for a more detailed discussion; the R-phase is 
obtained when the centre of the acceptance domain is placed at the origin). This symmetric 
l/l-structure lacks the characteristic pseudogap of the R-phase, there is only a very slight 
depression in the DOS just below EF (figure 3). The Ul-approximant is the only one for 
which an electronic structure calculation with a conventional k-space technique such as the 
LMTO is computationally feasible, as already for the 2/1-approximant with 136 rhombohedra 
(and nearly 700 atoms) the computational effort associated with the standard technique is 
too large. The alternative is to use the real-space recursion technique, with a TE-LMTO 
Hamiltonian based on the self-consistent potentials. 

Figure 4 compares the two results for the Ill-approximant. We find that the recursion 
calculation reproduces all the main aspects of the electronic spectrum very well, but the 
necessary truncation of the continued fraction at a finite level leads to a smearing of the fine 
structure in the DOS. The DOS at EF is n(E~)=0.22 states (eV atom)-', the minimum at the 
DOS is n(E)=0.20 states (eV atom)-'. This broadening means that the recursion calculations 
are sufficiently accurate to discuss any features of the electronic spectrum that could possibly 
be related to a spectroscopic experiment (the resolution of the TB-LMTO recursion may be 
estimated to be 0.05 to 0.1 eV, depending on the number of recursion levels and the order 
of the approximant), but not for exploring transport properties depending on the DOS in a 
very narrow interval around EF and on the character of the eigenstates (which cannot be 
characterized by recursion calculations on models with moderate linear dimension). 

4.2. Electronic spectrum of higher-order approximants 

Figure 5 shows the electronic density of states for 3/2-, 5/3- and 8/5-approximants to 
the icosahedral phase, calculated on the basis of canonical cell tilings with the atomic 
coordinates relaxed under the constraint of conserving the symmetry of the approximant. 
Out of the possible models within each class of approximants we have chosen smctures 

/-' 
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which are most compact in perpendicular space. This would seem to guarantee that these 
models are also quite close to the models constructed by projection from the six-dimensional 
hypercubic lattice. These models contain 2888, I2232 and 51 752 atoms in the periodically 
repeated cell. The calculations  have been performed on the basis of a second-order m- 
Hamiltonian (cf equation (2)) for each of the five topologically inequivalent sites (vertices, 
mid-edge positions, etc, occupied as in the R-phase). The self-consistent U T 0  potential 
parameters resulting from the LMTO calculations for the I/l-phase are used. The continued 
firaction for the Dos has been extended to 50 levels for the 3/2-, and 80 levels for the 
5/3- and 8/5-approximants. Extension to 100 levels for the 8/5-approximant leaves the DOS 
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invariant. 
The result shows very small changes in the electronic spectrum: at the Fermi level 

the DOS is n(E+0.25, 0.22 and 0.22 states (eV atom)-' with increasing order of the 
approximants. This is in agreement with the nuclear magnetic resonance study of Hippert 
et e[ [26] who estimated a decrease of n(EF) of about 7% in the i-phase relative to the 
R-phase. 

The result is not specific to the CCT models. This is demonstrated in figure 6 where we 
compare the DOS of the 5/3-approximants for the CCT and 3DFT models, with the atomic 
coordinates relaxed without any symmetry constraint. One remarkable difference is that the 
CCT models show more structure than the 3DFT models- similar result has already been 
obtained for the phonon DOS 1381. It is related to the fact that the local structure is better 
defined in the CCT model: the idealized ccr model is less subject to a displacive modulation 
under the action of the interatomic forces. The effect of the relaxation is demonstrated in 
figure 7 where we compare the DOS for the 5/3-3DpT model in its idealized configuration 
and in two configurations relaxed with and without symmetry constraints. The fact that the 
displacive modulation induces only small changes in the electronic spectrum confirms that 
the modulation of the idealized quasicrystalline structure is sufficiently weak and does not 
affect the electronic factors favouring quasicrystalline stability in a negative way. 

Finally, we have explored, in the example of the 5/3-approximant to the SDF'T, the effect 
of variations in the local chemical order on the electronic structure.. The open question is 
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Figure 7. Comparison of the electronic densily of states Figure 8. Effect of I d  chemical ordering on the 
for CCT 5I3-approximants: idealized configuration (full e l emnic  density of states of a5B-3Dm approximant to 
curve), relaxed without symmetry constraints (broken i-AICuLi. The distribution of the AI and Cu atoms over 
curve), r e l d  with symmetry constraints (dotted the available sites is varied (a) all vertices occupied by 
curve). Cu (composition ~~ .&t l6 .5 lL i30 .16 ,  chain curve), (b) 

random occupation of vertices by Al and Cu. all mid- 
edge positions AI (Alss.ssCulo.ssLi3o.ss. full curve). (e) 
random distdbution of AI and Cu over vertices and mid- 
edge positions (Alsl.ssC~11.oosLi31.u. b m h  curve) and 
(d)  random occupation m i d e d p  positions by AI and 
Cu, all vertices AI (AIss.aCUloa~Li~.~6, dolted curve). 

mainly the distribution of the AI (Cu) atoms over the vertex and mid-edge positions-the 
occupation of the remaining sites and the distribution of AI (Cu) against Li is fixed for 
steric reasons and the requirements of stoichiometry. Neutron scattering experiments [37, 
541 with different Cu isotopes show little variation of the diffraction intensities, suggesting a 
random distribution of AI and Cu. On the other hand, refinement of single-grain diffraction 
data for CCT models shows that the crystallographic reliability factor @-factor) measuring 
the mean-square deviations of the computed diffraction intensities from experiment may be 
lowered by assuming a larger percentage of Cu on the vertices (36% Cu) than on the mid- 
edge positions (12% Cu) [49]. Figure 8 shows a series of DOSS for the 5/3-3DFT approximant 
with varying distribution of AI and Cu: (a)  all vertices occupied by Cu (this would increase 
the total Cu content to 16%, A1~~~3Cu~6,s,Li3o.76). (b) random distribution of Cu on vertices, 
but respecting symmetry constraints (Al5~.55Culo,6~Li~,3~), all mid-edge positions occupied 
by AI, (c) random distribution of Cu on vertex and mid-edge positions (Al~.~~Cul~.0gLi31,33), 
and (d) random distribution of Cu on mid-edge positions ( A I ~ ~ . s I C U I O . ~ ~ L ~ ~ O . ~ ~ ) .  all vertices 
occupied by AI atoms. All configurations have been relaxed under symmetry constraints. 
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The change in the DOS is small-the most important effect is the change in the weight 
of the Cu-d band and the variation of the pseudogap as a consequence in the change of 
stoichiometry. Except for the case where all vertices are occupied by Cu atoms, the deepest 
pseudogap is found with a mndoui occupation of the vertices of the rhombohedra by AI and 
Cu atoms, while all mid-edge positions are occupied by Al. This is in very good agreement 
with the result of the optimization of the R-factor predicting about 1:l occupation for the 
vertices, but only 11% Cu on the mid-edge positions. The occupation of all vertices by 
Cu (leading to an even deeper pseudogap) gives a stoichiometry outside the observed range 
and some unfavourable short inter-atomic distances. 

5. Band-gap creation in quasicrystals and approximants 

The mechanics leading to the formation of pseudogaps in the electronic DOS of icosahedral 
quasicrystals has been addressed either (a) in a two-plane analysis based on the concept 
of the quasiBrillouin zone 13-51 or (b) on the basis of the molecular eigenvalues of 
the icosahedral clusters existing in the quasilattice [55, 561. The Brillouin zone is the 
polyhedron in reciprocal space formed by the planes bisecting the Q vectors belonging to 
the star of equivalent Bragg reflections. Interaction between the states at opposing faces 
of the Brillouin zone leads to the formation of gaps at certain k-points, which upon IC- 
space integration become valleys in the electronic Dos. It has been argued 13-5, 111 that 
icosahedral symmetry leads to enhanced band-gap effects because of the high degeneracy of 
some stars of reciprocal lattice vectors. The variation of the band-gap effects in a hierarchy 
of approximants has been discussed by Carlsson [57]. 

Approach (b) concentrates on the local aspects of bonding in the distinctive icosahedral 
coordination environments of quasicrystals. It is argued that gaps exist in the local DOS 
of the icosahedral sites, whereas the non-icosahedral atoms do not show a gap in the local 
DOS at EF and contribute to a background DOS of states in the icosahedral gap. To explain 
the increased stability of the icosahedral phase over the approximants, it is argued that the 
smctural relaxation of the ‘glue’ atoms leads to the formation of a mini-gap via a Jahn- 
Teller-Like mechanism [56]. This argument is certainly speculative to a large extent and in 
view of the very small number of glue atoms even in our largest model it is unlikely that 
the ‘glue’ pseudogap is really a decisive factor. 

5.1. Recipmcal quasilanices 

The disadvantage of the Brillouin-zone argument is that it is based on a rather sloppy 
application of the reciprocal space concept to quasicrystals. Niizeki [58,59] was one of the 
first to show how these concepts may be extended to quasilattices: to the six-dimensional 
hypercubic lattice Lg in the six-dimensional space E6 there corresponds a six-dimensional 
reciprocal lattice L); (again hypercubic) in the six-dimensional reciprocal space. A 6D 
Brillouin zone may be defined in the usual way, with special points of high symmetry: the 
r points at the centre of the zone, at the Xz, Mz, X3, Ms, X5, M5 and the R points at the ‘zone 
boundaries’. Representative wave vectors are (with h = f )  (000000), (hh0000), (OOhhhh), 
( h h h w ) ,  (COOhhh), (hoooOO), (Ohhhhh). The point group symmetry of the special points 
is the icosahedral group Ih for r and R, and Dz,, D3d and D s  for X and M, depending on 
whether the subscript is 2, 3 or 5. The projections of the 6D special points on 3D reciprocal 
space define sets of quasiperiodically distributed special points. The special points are 
dense everywhere, but with intensities modulated by interference effects and described by 
a generalized structure factor. Figure 1 just shows the intensities of the points in a plane 
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containing the two-, three and fivefold symmetry axes, calculated for the Y3-approximant 
to the decorated 3DFT (within the accuracy of the graphical representation). Similar plots 
may be constructed for the other high-symmetry points. These quasiperiodically distributed 
sets of mnecentre (r) and the mneboundary (X, M, R) points define the quasiperiodic 
analogue to the extended-zone scheme of a crystal (accounting for the modulation of the 
intensities arising from interference effects) and provide a solid basis for the extension of 
the band-gap ConcepT to quasicrystals. 

5.2. Quasiperiodic nearly-free-electron model 

In the extended zone scheme of the nearly-free-electron model, each r point is the origin of a 
parabolic dispersion relation. In the case of a quasicrystal, there are free-electron parabolas 
everywhere, but their importance is weighted with the intensity of the corresponding r 
point. Figure 9 shows the intersection of the most intense freeelectron parabolas with a 
plane passing through two two-fold symmetry axes: the parabolas having their origin at the 
bottom of the band are easily associated with the most intense F points situated along the 
two-fold axis (cf figure 1). The intersection of two or more free-electron parabolas defines a 
degenerate state whose degeneracy will be lifted through the interaction of the electron with 
the quasilattice, leading to the formation of a band gap at the particular k point whose width 
is proportional to the mafxix element of the electron-ion pseudopotential and the structural 
weight of the r point at which the dispersion relation has its origin. Figure 9 also shows 
the position of some of the most intense XZ and Mz points. Note that in principle there 
will be gaps everywhere, but their conhibution to the spectrum has to be weighted with the 
intensity of the corresponding r point. 
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Figure 9. Dispersion relalions E(k)  for elect" in the 5 B a p p x i " t  to icosahedral AlCuLi 
for k-points along a twofold symmetry axis. Broken ewes. free-electron parabolas originating 
from themost intense r points on and in the vicinii of the twwfold axis. Full pints, dispersion 
relations as determined from the positions of the peaks in h e  Bloeh spectral function f (k. E ) .  
The size of ihe dot scales with the amplitude of the peak. See text. 
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For A1CuL.i. the degenerate free-electron states at binding energies of - -8.5, -6.5, 
-2 and 0 eV compare quite favourably with the minima in the calculated DOS, but the real 
task is to determine the dispersion relations of electrons in real quasicrystals. 

5.3. Bloch spectralfunctions and dispersion relations for electrons in qwicrystals 

In crystals the Bloch spectral function f(k, E )  consists of a set of delta functions situated 
at the poles of the resolvent operator (E - H)-', their position in k-space defining the 
dispersion relations (or band structure) of electrons in the crystal. For a quasicrystal, the 
delta-function poles are dense in k-space and they are weighted by interference effects. 
The finite resolution of a recursion calculation produces a smooth Bloch spectral function 
whose peaks define the dispersion relations for the most important electron states in the 
quasicrystal. 

Figure 10 shows the Bloch spectral function f ( k ,  E )  calculated using the recursion 
method for k vectors pointing along a two-fold axis, the maxima of this function defining 
the dispersion relations shown in figure 9. Similar results are obtained for all other 
high-symmetry directions. The most prominent peak in f ( k ,  E )  stems from the almost 
dispersion-less Cu-3d states, but the remaining states conform very well with the free 
electron model (although the actual calculation has been performd within a tight-binding 
framework): one easily recognizes the nearly parabolic bands starting out from the most 
intense r points and the pseudogaps formed at the 'quasi-zone boundaries'. The coincidence 
of the Fermi level with a particular set of highly degenerate free-electron states depends on 
the filling of the band and hence on the electrodatom ratio. This completes the analogy 
with the crystalline and amorphous Hum-Rothery phases [13-161. 

SPECTRAL FUNCTION F[ k ,  E l  
A I - C u - L i  5/3 ~~ 

K i p  10. Bloch spectral function f (k. E )  for elect" in the 5d-appmximant to icosahedral 
AlCuLi with k pointing along a two-fold symmetry direction. 
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It is important that the same arguments apply to other elementary excitations in 
quasicrystals, e.g. phonons [38, 60, 611. The r points are the origin of the dispersion 
relations (linear for phonons) of propagating eigenstates, and the lifting of their degeneracy 
leads to a stationary-mode behaviour at the 'quasi-zone boundary'. For phonons, this 
scenario given on the basis of theoretical arguments is confirmed by inelastic neutron 
scattering experiments [62,631. 

5.4. Band-gap formation 

The mechanism for band-gap creation discussed in the previous section differs significantly 
from pseudo-Brillouin-zone arguments discussed in the literature [4, 5, 111. There, very 
much in the spirit of a reduced-zone picture, the argument was based on a single Brillouin 
zone (that corresponding to the (111101) point in the case of i-AICuLi and i-AlZnMg) 
making contact with the freeelectron Fermi sphere. These considerations stress the 
importance of the icosahedral point-group symmetry, but largely ignore the aspect of 
quasiperiodicity. The important consequence of quasiperiodicity is that the r points are 
dense everywhere in k-space with a quasiperiodic modulation of their intensities. Thii 
leads to quasiperiodic freeelectron dispersion curves and a quasiperiodic sequence of highly 
degenerate free-electron states. The lifting of the degeneracy of these states leads to the 
formation of a pseudogap, not only at an isolated k point, but extending throughout IC-space 
(see figure IO) at a constant energy. 

The fact that the electron states close to the Fermi energy are stationary is also important 
in understanding the anomalous transport properties: not only does the reduced DOS at the 
Fermi edge lead to an increased resistivity, but the stationary character of the electron states 
also leads to a low Fermi velocity and hence to a further reduction of the conductivity. 

6. Comparison with experiment 

We have already mentioned that the calculated DOS at EF agrees well with the data extracted 
from the electronic specific. More information on the valence-band spectrum may be 
obtained from soft x-ray emission (Sxs) [22] and photoemission spectroscopy (PES) [@I. 
Figure 11 compares the calculated AI s+d DOS for the 111- and 5/3-approximants with the 
measured Al-Lz.3 Sxs spectra of the R- and i-phases of AICULi and of pure. FCC AI. The 
absence of the threshold singularity characteristic of the pure simple metals [651 is common 
to the calculated and measured spectra of the R- and i-phases; it confirms the predicted 
reduction of the DOS at the Fermi level. However, we note that the pseudogap is most 
pronounced in the AI-p partial DOS, so that the AI-Kp spectrum would be more informative 
than the L spectrum. The broad peak at a binding energy of about 5.5 eV arises mainly 
from the s states. The structure in the calculated spectrum is reflected in the asymmetry 
of the measured intensity. Figure 12 shows the Li-Kp spectrum for the pure metal and 
the R- and i-phases, compared with the partial Li-p DOS. Again, the marked peak at the 
threshold of the spectrum of the pure metal is replaced by a rounded peak in both the R- and 
i-phases. Agreement between theory and experiment is good when we match the maxima 
of the spectra, as far as the shape and width of the spectrum are concerned. At the Fermi 
level, the computation predicts a somewhat higher Li-p partial DOS than is observed in 
experiment. The shape of the experimental curve at EF, however, looks curious (no sharp 
Fermi cut-off) and deserves reinvestigation. 

The photoemission spectrum results, to a first approximation, an average over the 
local partial densities of states, weighted with the partial photoionization cross sections 
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Figure 11. AI s td  panid densities of states (full u w e s )  
compared to the ALL2.3 sxs s p e c ”  (after [ZZ], broken 
curves), in the R-phase (c. e) and QC-phases (b, d) 
of AICSi. The s p e c ”  for pure AI is shown for 
comparison (a). Each successive curve is displaced 
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Figure 12. Li-p partial density of states (full curves) compared to the Li-Kp sxs spectnun 
(broken curves, after [221), in the R- and QC-phases of AICuLi. The spectrum for pure Li is 
shown for comparison (dotted c w e ) .  For each set of data, the zero of the DOS has been shifted 
vertically by 0.06 DOS wig. 

ui,,(E, hu). At sufficiently high photon energies (i.e. in the x-ray PES regime), the cross 
section may be calculated as a function of the electron binding.energy E in a single-scatterer 
final-state approximation 166, 671. The available experimental data have been taken at 
photon energies of fro = 100 and fro = 40 eV. At least for the lower energy, we must 
admit that it is perhaps no longer admissible to neglect k-vector conservation, although 
the IC vector is not a good quantum number for quasicrystals. An in depth discussion 
of the photoemission process in quasicrystals, however, would lead too far in the present 
context. A further problem arises from the fact that for the narrow Cu-d band self-interaction 
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corrections for the Cu-d hole lead to an apparent [14,68] shift of the d-band by about 1 eV 
to larger binding energies. Figure 13 shows the calculated PES intensities for the 5/3-CCT 
model compared with experiment. The position of the Cu-d DOS has been shifted so as to 
match the experiment (simulating the effect of the self-energy of the d-band hole). We find 
reasonable agreement between theory and experiment, in particular concerning the existence 
of a reduced DOS at EF which is more distinctly visible in the 100 eV spectra. 

-10  - 5  0 
E-E, (eV1 

Figure U. PES spclrum (hv = 100 ev) for R- and 
QC-phase NCuLi, calculated with shilled Cu-d band 
(full CUN~S). Exprimental spectra [22l are shown by 
'the broken curves, cf text. For the spectrum of the 
quasiqskd, the zero of the intensity has been shilied 
venicaUy by one unit. 

7. Conclusions 

We have presented detailed results on the electronic spechum of a hierarchy of approximant 
crystals to icosahedral quasicrystals in the AlCuLi system. We have shown that the 
pseudogap at the Fermi energy is a generic, structure-induced feature of the entire hierarchy 
of approximants (our calculations extend up to the 8/5-approximant with more than 55 000 
atom in the periodically repeated cell), and hence also of the quasicrystal. The existence of 
the pseudogap is not greatly sensitive to details of the shuctural model: it exists in Penrose 
tiling as well as in canonical cell tiling models (this shows that the existence of large 
icosahedral clusters is not a condition for the formation of the pseudogap, since these clusters 
exist in the CCT, but not necessarily in the larger 3Dm approximants). It is also compatible 
with a certain degree of chemical disorder. The depth of the pseudogap varies only 
insignificantly in the hierarchy of the approximants-this is in agreement with the available 
spectroscopic data 122, 26, 641 and is reasonable from the point of view of energetics since 
for AlCuLi both the l/l-approximant and the quasicrystal are thermodynamically stable. 
Evidently this is possible only if they receive a comparable pseudogap stabilization. 
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